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•  Compute	 node	 as	 a	 self-contained	 entity	 as	 opposed	 to	 
reserving	 extra	 nodes	 or	 an	 analysis	 cluster


•  Spatially	 co-locating	 the	 simulation	 and	 post-
processing	 avoids	 the	 latency	 in	 out-of-band	 analytics,	 
reduces	 overall	 data	 movement	 and	 time	 to	 solution


•  Higher	 resource	 utilization	 leads	 to	 better	 energy	 
efficiency


Our Approach 

Motivation 

 
 

Functional Partitioning (FP) Framework 

What about Jitter? 

16 AMD Bulldozer Cores 
(with 8 FPUs) + 1 K20 GPU + 

32 GB DRAM 

Titan Node Structure 

•  GPU	 is	 the	 main	 compute	 engine,	 hence	 the	 CPU	 on	 a	 
node	 acts	 only	 as	 a	 master


•  Just	 a	 few	 CPU	 cores	 can	 generate	 enough	 work	 to	 
keep	 the	 GPUs	 busy,	 rest	 stay	 idle


•  Underutilization	 of	 CPU	 resources	 

•  Post-processing	 tasks	 such	 as	 data	 validation,	 data	 
analytics	 and	 mining,	 feature	 extraction,	 and	 
visualization	 pre-processing	 can	 utilize	 these	 
underutilized	 node-local	 CPU	 resources


Advantages Over Existing Techniques 

•  Functional	 partitioning	 (FP):	 A	 runtime	 framework	 
to	 facilitate	 the	 exploitation	 of	 underutilized	 CPU	 
cores	 towards	 an	 applications	 own	 end-to-end	 tasks	 


•  Generic	 framework	 to	 express	 the	 relationship	 
between	 the	 main	 task	 and	 several	 sub-tasks


•  Simple	 library	 calls	 enable	 easier	 application	 
integration	 and	 adoption


FP	 Integration with CESM


•  Specify	 FP	 tasks	 in	 a	 configuration	 file

•  FP	 tasks	 (Pthreads)	 are	 loaded	 dynamically	 at	 runtime

•  fp_post()	 to	 invoke	 tasks	 after	 writing	 analysis	 output

•  Minimal	 code	 modifications	 required	 for	 integration


Execution	 time	 of	 different	 types	 of	 client	 application	 (Base),	 main	 application

followed	 by	 post	 processing	 (Post),	 and	 main	 application	 using	 FP	 (FP)


•  Performance	 jitter	 study	 using	 micro-benchmarks	 that	 
significantly	 stress	 different	 resources	 on	 the	 compute	 
node


•  Consistently	 reduced	 execution	 time	 observed	 when	 
using	 FP	 compared	 to	 out-of-band	 post	 processing


•  CESM	 is	 a	 memory	 intensive	 application	 and	 hence	 
compute	 intensive	 workflow	 tasks	 from	 CESM	 are	 good	 
candidate	 for	 end-to-end	 computing	 using	 FP	 


Out-of-band	 CESM	 Workflow
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FP_Init() //Start the FP deamon!
;CESM Code!
..!
;CESM Code!
!
FP_Post(<args>) //FP deamon !                          

!      creates Pthread!
;CESM Code!
..!
;CESM Code!
!
FP_Finalize() //Finish, Cleanup!FP services/ 

tasks	
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Schematic	 of	 FP	 runtime
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CESM	 Workflow	 with	 FP


CESM-FP Results 

•  FP	 is	 able	 to	 increase	 resource	 utilization	 and	 reduce	 the	 
overall	 execution	 time	 of	 the	 CESM	 workflow


•  Improves	 time-to-solution
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Client app: 8 Ranks, FP tasks: 8  Base 
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